Inherent difficulties in nonparametric estimation of the cumulative distribution function using observations measured with error: Application to high-dimensional microarray data
نویسندگان
چکیده
منابع مشابه
Value at Risk Estimation using the Kappa Distribution with Application to Insurance Data
The heavy tailed distributions have mostly been used for modeling the financial data. The kappa distribution has higher peak and heavier tail than the normal distribution. In this paper, we consider the estimation of the three unknown parameters of a Kappa distribution for evaluating the value at risk measure. The value at risk (VaR) as a quantile of a distribution is one of the import...
متن کاملEfficient Estimation of the Density and Cumulative Distribution Function of the Generalized Rayleigh Distribution
The uniformly minimum variance unbiased (UMVU), maximum likelihood, percentile (PC), least squares (LS) and weighted least squares (WLS) estimators of the probability density function (pdf) and cumulative distribution function are derived for the generalized Rayleigh distribution. This model can be used quite effectively in modelling strength data and also modeling general lifetime data. It has...
متن کاملNonparametric Function Estimation for Clustered Data When the Predictor is Measured Without/With Error
We consider local polynomial kernel regression with a single covariate for clustered data using estimating equations. We assume that at most m < ∞ observations are available on each cluster. In the case of random regressors, with no measurement error in the predictor, we show that it is generally the best strategy to ignore entirely the correlation structure within each cluster, and instead to ...
متن کاملClustering via nonparametric density estimation: an application to microarray data
Cluster analysis is a crucial tool in several biological and medical studies dealing with microarray data. Such studies pose challenging statistical problems due to dimensionality issues, being the number of variables much higher than the number of observations. Here, we present a novel approach to clustering of microarray data via nonparametric density estimation, based on the following steps:...
متن کاملSmooth semi‐nonparametric (SNP) estimation of the cumulative incidence function
This paper presents a novel approach to estimation of the cumulative incidence function in the presence of competing risks. The underlying statistical model is specified via a mixture factorization of the joint distribution of the event type and the time to the event. The time to event distributions conditional on the event type are modeled using smooth semi-nonparametric densities. One strengt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistics and Its Interface
سال: 2014
ISSN: 1938-7989,1938-7997
DOI: 10.4310/sii.2014.v7.n1.a8